SMB2: 351 Packets from the Trampoline

Wpis na blogu utworzony przez uztkownika rapid7-admin w 2009-10-04

"Lubie to" ¢ 0 Komentarz + 3

Originally Posted by hdm

This a guest blog entry written by Piotr Bania

Disclaimer

The author takes no responsibility for any actions taken using the provided information or code. This article is copyright (C) 2009 Piotr
Bania, all rights reserved. Any duplication of code or text provided here in electronic or printed publications is not permitted without the
author's agreement.

Prologue

About a month ago Laurent Gaffié released an advisory in which he described the SMB 2.0 NEGOTIATE PROTOCOL REQUEST
Remote BSoD vulnerability. Fortunately for some and unfortunately for others this vulnerability is remotely exploitable. At the time of
writing, there are only two exploits available for this flaw, one written by Immunity Inc., which only provides a copy to paying customers,
and one written by Stephen Fewer and included in the Metasploit Framework. Unfortunately, Stephen Fewer's exploit seems to be
unreliable against physical machines (vs VMs) due to a hardcoded address from the BIOS/HAL memory region (OxFFDO0OD09) which
must be initiated to "POP ESI; RET". In this article | am going to describe a method for exploiting this vulnerability that only requires a
stable absolute memory address (filled with NULL bytes).

Step One. Where to?
First, lets take a look at the vulnerable code, we will assume a Windows Vista SP2 operating system and SRV2.SYS version
6.0.6002.18005:

Ltext:O000S5EEY Loc S6B3: : CODE EREF: SmbiValidateProviderCallback(x)+405T3
.Lext:000056ES ; SmbivalidateProvidercalloack (k) +40ET)

Ltewt 00005683 WOVIH eax, woard ptr [esi+lch] |

ctext:0O000SEE7T mon eax, _ValidateRoutines[eax*®4]

.Text:00005EEE teat eax, eax

CEext:D00O56C0 anz short loc 5809

JLEXL:000056CE oy eax, 0CO000DDOZh

. TEXt 00005607 Jmp ghort loc S6CC

B 1 L =
.Text:000056CT

Eext: 00005608 loc S5aCS: : CODE EREF: EmbivalidateProviderCallback (x)+4F TJ
JLext 00005609 push ebx

JLEXL:O00DS6CK call eax ¢ SwkaValldaveNegotlate (x| ; SwphovalidateNegotlats (X

At offset 0x000056B3 EAX is initialized with a word from [ESI+0Ch]. The [ESI+0Ch] location points to the SMB2 packet, giving the
attacker complete control on the lower 16 bits of the EAX register (AX). In the next instruction (0x000056B7) our controlled EAX is
used as an array index. There is only one safety check on this value that verifies that *(DWORD*)ValidateRoutines[EAX*4] is not
NULL. This is the cause of this vulnerability, since there is no check to determine if the EAX value (array index) exceeds the number of
elements in the ValidateRoutines array. Further in the code, the location pointed to by ValidateRoutines[EAX*4] is executed by the "call
EAX" instruction (0x000056CA).

In summary, we can redirect execution to any location (as long as it is not null) from ValidateRoutines to (ValidateRoutines + (OxFFFF

https://community.rapid7.com/community/metasploit/blog/2009/10/04/smb2-351-packets-from-the-trampoline#
https://community.rapid7.com/login.jspa
https://community.rapid7.com/login.jspa?registerOnly=true
https://community.rapid7.com/people/rapid7-admin
https://community.rapid7.com/people/rapid7-admin
https://community.rapid7.com/community/metasploit/blog/2009/10/04/smb2-351-packets-from-the-trampoline#
https://community.rapid7.com/community/metasploit/blog/2009/10/04/smb2-351-packets-from-the-trampoline#comments
http://www.piotrbania.com/
http://g-laurent.blogspot.com/2009/09/windows-vista7-smb20-negotiate-protocol.html
http://trac.metasploit.com/browser/framework3/trunk/modules/exploits/windows/smb/smb2_negotiate_func_index.rb
https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1083/vuln_code.png

* 4)). This gives us about 2M6 potential memory locations to check. this is not completely accurate, since we cannot assume that any
memory location outside the SRV2.SYS address space will be consistent across mul;tiple machines (device driver InageBase
addresses change on every boot). To make my life less miserable, | wrote a little program that dumps the SRV2.SYS address space
from system memory, then disassembles every potential region that can be reached through ValidateRoutines[INDEX*4]. Additionally,
| set some boundaries that ensure we are operating only on the SRV2.SYS address space. Here are the results | have obtained:

I must confess that | was confused at first, not because of the results obtained, but due to the Immunity exploit video that was
released. In this video, they stated that exploitation is based on on time values. This led me to focus on any function that manipulated
time values. | noticed that the SrvBalanceCredits function (index 0x31, 0x4b7) can be used to modify the CurrentTime structure
(0x0001D320), which can then be used again later as the memory address for a "call EAX". However, since KeQuerySystemTime
returns the time as a count of 100-nanosecond intervals since January 1, 1601 and the system time is typically updated approximately
every ten milliseconds, it is very unlikely to use this as reliable offset. An alternative would be to use the BootTime variable and reboot
the machine to reset it, however my results were still not satisfying (the BootTime and CurrentTime values are both returned as part of
a normal SMB2 NEGOTIATE_RESPONSE packet, so it is possible to query these remotely).

| decided that the time approach was a dead end and that it was time to start over from scratch and never watch Immunity videos
again :-) After leaving the time approach | decided to look into the functions that would corrupt the stack by using a accepting a
different number of arguments than the original function. The following indexes showed the most promise: 0x217
(srv2!SrvSnapShotScavengerTimer), 0x237 (srv2!SrvScavengerTimer), 0x1e3 (srv2! SrvScavengeDurableHandles Timer), and Ox1bb
(srv2!SrvProcessOplockBreakTimer). Stephen Fewer's exploit uses the 0x217 (srv2!SrvSnapShotScavengerTimer) as a index value.

All four of those indexes have something in common:

kd» u poil(srvi!ValidateRoutines+(0z217=4))
srvl | SrvSnapShotScavengerTimer

37ebef 35 eall push 1

972lef37 EBE092=197 push of fzet =rvl|SrvSnapShotScavengsrState (97=219a80)
37elef3c ££151880=1597 call dvord ptr [srv2|_imp_ ExQueuslorkItem (97e18018))
37elefd? 21000 ret 10h

97elaf 45 90 nop

37elefdb 90 nop

91720efd? 90 nDp

37elef 48 =0 op
kdr u pul(:er|ValldatcRDut1n:3+{Dx23?'4]]

srv? | SrvScavengerTimer:

37dieesab Gall puszh 1

97dfieead EE009b=197 push offset srvl|SrvScavengerState (97=19b00)
37dfesb? ff151880=197 call dvord ptr [srv2!_imp__ExCususWorkItem (97=18018))
97dfeebd 21000 ret 10h

47dfesbb 90 nop

37dfeebe 90 nop

97dfesbd 90 nnp

37dfeesbe nop
kdr u po1 (srv2 IWalidateFoutines+(lxled=d))
srvd | SrvScavengelurablelandlesTiner:

97=0f4c3 Ga00 push]

97e0f4ct BBal992197 push offset srv2|Snb2lur (97=19%9a0)

97e0fdca ff1516880=197 call dvord ptr [srv2!_imp_ ExQueuslorkItem (97=18018)]
37e0f4d0 =21000 ret 10h

37elf4d3 90 nop

97=0f4d4 90 nop

97e0f 4dE 90 m:np

37elf4di 90 nop
kdr u poif(srv?|ValidateRoutines+(0zlbb#®4})
srv2 | SrvProces=0plockBreakTiner :

97altb2f call push]

37e0ibil 6500332197 push ofizet srvl|SrviplockState (37=213300)

97=0fbi6 ££f151880=197 call dvord ptr [srv2!_imp FExQueuslorkTtem (97=18018}]
37elfb3c 21000 ret 10h

Each of those functions ends with a "ret 10h", indicating the function expects four arguments, and will adjust the stack to account for
those when it returns. To see how this helps us, lets take one more look at the vulnerable code:

LLext 00005609 loo S6C3: : CODE EREF: SmhiValidateProviderCal lback (<) +4¥F3T3
Jbext 00005602 pu=h ebx

LTEHC I O000560E call eax @ SwhivalidateNegociate (X)) : SebhivalidateNsgooiate

ctext :O000SECC

LLexC:0000SECC loc SECC: ; CODE ZREF: Smb2¥alidateProvidercallback(=)+54T3
Ltext :O000SECC - : lidateFrovidercallback (x| 429015 ...
LLENni0000SECT o eox, [=hp+var_4]

Jhext rO0005ECE poT edi

Lbexn 00005600 pop ezl i ezi=packer

Ltext i 0000SED1 xOr eax, ehp

LLext ;00005603 pop ebx

LLENEIOD00SEDE aall E_ securicy_check cookield : IeCUritY_check cookile (x)
-text:0000SEDD leanre

LEXC i 00005EDA retn 9 ¢ Dack woi 1faVr

-text :O0D0SEDL _ Smb2Vel: datePru\.ld:LCallnacU% endp

As you can see, the procedure pointed to by EAX is called (0x000056CA) with one argument on the stack (see 0x000056C9 - PUSH
EBX). SRV2.SYS assumes that the called function is using the stdcall convention (callee is responsible for cleanup of the stack).
Since we forced EAX to point to one of the "ret 10" functions, the callee will clean the stack, but adjust it for for four parameters, not

https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1084/ret10_routines.png
https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1085/vuln_code_end.png

just the single parameter that was passed in (0x10=16 -> 16/4=4). How does this influence the execution flow? Take a look:

Brealpoint 0 hit
=rv?|Snb2ValidateProviderCal lback+i=zdfe:

99=0%c9 53 push =bx

kd: d e=p

9a7eadlc 00 00 OO0 00 =8 05 50 92—a4 ba 73 85 84 GSb 8d 92 = .[.
9a7eadle f0 65 Ya 85 B8 07 90 92-80 5o 8d 92 48 bS 73 8BS ez, ~. H.=.
9a7eadZc 20 Sb Bd 92 oo 3f e2 99-00 00 00 00 75 be 9c 03 [...7...... ...
9872ad3iz 50 ad Ye 9= Yf 3Ja &2 99—=8 0L 90 92 58 bs Y3 B P& . =
9a7eaddc =B 05 90 92 7c ad 7e 92-9f 21 =2 99 =8 05 90 92|~ 0.
9a7ead5c 00 00 OO0 00 48 b5 73 85-00 00 00 0O OO OO OO OO ... H=....... ..
9a7eadfc 00 00 OO0 00 B0 ad 7= 92-01 00 00 OO 01 OO OO0 0O L
9a7ead?c <0 ad 7e 9a bd 65 9= 81-00 00 00 00 d1 14 1c 12 . ™~ e..
kdr p

=rv?|Snb2ValidateProviderCal lbaclk+0=x4£f :

99=09%8ca f££d40 call eax

kd: p

srvi!SnbiValidateProviderCallbaclk+0x501:

99=0%cc 8bddfc o ecx,dvord ptr [ebp—4]

ldr d esp

9a7eadl18 B4 S5b Bd 92 f0 &5 7a 85-88 07 90 92 80 Ge 84 92 . [...ez.... .. T
9a7eadZ8 48 bE 73 85 20 Sb B8d 92—cc 3f =2 99 00 00 00 OO0 H.o=. [...7......
9a7ead38 75 bt 9= 03 50 ad Ve %9a-7f 3a &2 99 =8 05 90 92 u. . P~
9a7eadd48 58 ba 73 85 e8 05 80 92-7c ad 7e %2 9f 21 e2 99 H.=..... [oo
9a7ead58 =8 05 90 92 00 00 00 00-48 bS5 73 85 00 OO OO OO H= . ..
9a7ead6® 00 00 OO OO0 OO 00 00 00-80 ad 7e 9= 01 OO OO0 0O ~o
9a7ead?78 01 00 00 00 =0 ad 7e 9a-bd 65 9= 81 00 OO0 OO OO L =

9a7ead88® dil 14 1c 12 00 00 00 00-00 00 OO0 00 OO0 OO0 OO0 QO
kd: d poi{esp+4)

857a65£0 f£f 53 44 42 72 00 00 00-00 18 53 =B 37 02 00 00 .SHBr..... 5.7
857a6600 00 00 00 OO 0O OO OO OO-ff £f £f f= 00 00 OO0 0O
857a6610 00 8= 03 02 53 4d 42 20-32 2e 30 30 32 00 90 20SMB 2.002...

The first "d ESP" command shows the stack before the "CALL EAX" (where EAX points to on of the "ret 10" procedures). The second
"d ESP" shows the stack after the "ret 10" function was executed. The important part is when the "POP ESI" (0x000056D0) instruction
is executed, it will be exchanged with the pointer to our SMB packet (see "d poi(esp+4)") -- this will bring us some serious kudos later.
Additionally, even if at the moment the stack pointer is invalid (because we haxored it) it will be reinitialized correctly by the instruction
at 0x000056D9. As you probably know, the LEAVE instruction (also called High Level Procedure Exit), sets the ESP to EBP and pops
EBP. In other words, despite the fact we have mangled the stack and forced ESI to point to our packed data, ESP will be "good" again.
That is important, since otherwise it would cause an exception when executing the "ret 4". Lets assume we used 0x237
(srv2!SrvScavengerTimer) as an index, after few instructions we land here:

PAGE:DOO1FABL loz 1FAEL: : CODE ZREF: SrvProcessPacket (x)476T3
PAGE:DOD01FABL setnl cl

PAGE:DOO1FAES push ecx

PAGE:QO01FLES rush 2ax

PAGE:O0O01FABE

PAGE:DOOL1FABEE loc LFAEG: : CODE XREF: SrvProcessFacketl |.<:—:'BTJ'
PAGE:DOQD1FABE : SrvProceasPacket (x) +78T3
PAGE:DOD01FADG rush esi : esi=pakiet

PAGE:DDO1FAB7? call _Sr=.r.‘-'racl::::plete?eques:ﬂ12 : SEVProoComp leteRegusst

PRGR:NOMNTFARC
As you can see, ESI still points to our packet. The instruction at 0X0001FAB1 (setnl cl) is also a key factor in the way | have chosen to
exploit this, since the setnl result depends on the value our called "faked function", which is why a function like Ox1e3
(srv2!SrvScavengeDurableHandles Timer) will not work), since the CL register must be 1 before the PUSH ecx is executed. This will
be discussed later.

Step Two. Mum| want a Trampoline!

In this step we will create a trampoline that will transfer the code execution to the shellcode. Stephen's exploit code depended on a
static "pop esi; ret" address that made it unreliable on many non-virtual machines. With my technique, we just need to find a stable 4-
byte memory region filled with NULL bytes (or any other predictable value) and we will force the SMB code to build a trampoline for us,
using just 351 packets. After some digging | found following piece of code interesting (located in the end of
_SrvProcPartialCompleteCompoundedRequest@8 function):

PAGE:000Z 1156 ma’ebis i 4 COBE EREF: SrvwPeocfastialComg letedompoundsdequeat (3, w) 2307y
00021156 ®OT S, SoH
=000z 1158 laa cax, [Sbx+IECH]
000z 115% ine BCH
nnng 1157 lock sadd [eax], =c% i [Eax] s
nong 1153 inc BCH
nnng 1164 my scK, [Ebr+000R]
000z 1165 ang shart loc_21176
=000z 116C push =hx
G2:0002 1167 call _AcvFroctompleteCmpoundedRequestBd : SovPzocComp e teCompo wnded
B2 00021172 moy bybte pkr [shp+rpakstsi], I
3200021176
P00 11760 loc_ 11963 i CODE ZREF: ScvPoocPactiamlCompleteCompoundedPequest ixox! +150T3
FEE000E117e may al, kyte ptr [=bp+paket=d]

The instruction located at 0x0002115F is used to automically increase the value pointed to by the EAX register by ECX (=1). This is
actually a variation of the InterlockedExchangeAdd function. The key point here is that the EAX register value is controlled by the SMB

packet and ECXis set to 1. Lets review how the EBX register value is computed:

https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1086/my_stack.png
https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1087/landing1.png
https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1088/go_tramp.png

In the code above, you can that EBX is equal to the [packet+0xAC] field. This means that the memory region that is be increased by
the xadd instruction is equal to [packet+0xAC]+0xBC (this offset changes among the different Vista versions). This provides us with
full control of the area that will be increased by each request. So what we are going to do with it? We are going to build a trampoline,
dumbass :-)

To do that we, must consider:

1) We need an absolute memory address that is executable (see DEP) and is filled with constant data (NULLs in our case, however
thanks to the xadd arithmetic operation any stable value works). We

need four bytes of NULLs at the address and an additional three bytes before it to handle overlapping writes to reduce the number of
packets required.

2) We need to know what value to compute and how many requests it will take to accomplish this.

Answers:

1) Lets use the same BIOS/HAL region chosen by Stephen's exploit, since the memory here is readable, writeable, and executable.
NULL bytes in this region are much easier to find than a POP ESI;RET for sure!

2) It seems that the opcode sequence "INC ESI; POP ESI; RET" (0x46 Ox5E 0xC3) would be the easiest way to bounce to our
shellcode using this as a trampoline. However, writing the value 0x4656C3 with a single increment per require would require us to
send 4,609,731 packets. Fortunately, there is a solution that reduces this to just 351 packets -- a much more reasonable number. The
trick is to divide the process into three stages, where each stage is responsible for increasing only one byte. For example, we send
0x46 packets to increment address+0, 0x65 packets to increment address+1, and 0xC3 packets to increment loc+2.

Step Three. Code Execution
Now that the trampoline is ready we just need to jump to it, here is the code responsible for that:

FAGE:DDD1FBBE =xec _proc: ; CODE XREF: SrvProcCompletePRequest (x,x, x| +8713
PAGE:OD01FBEE : SrvProccComplecefequest [x,3x,%x) +BFT)
FPAGE:0OD01FBEE WOV eax, [e3i+l6s8h] ; fnotion offsetc

PAGE:0001FB94 cmp eax, edi

FAGE: DO01FB94 iz shoct func pointer nu

PAGE:DDD1FBSE push =3

FAGE:DOD1FBESS call =K

EAX (call desitnation address) is fully controlled by the value from the SMB packet (ESI+168h). This offset changes does change
between different Vista versions. Here's the general schema of my attack:

https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1089/ebx_compute.png
https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1090/exec_code.png

That is all for now, expect to see an updated Metasploit module in the near future that takes advantage of this technique.

Widocznos¢: Vetasploit « 1224 wySwietlen
Data ostatniej modyfikacji: 2011-04-05 20:42

https://community.rapid7.com/servlet/JiveServlet/showImage/38-4930-1091/algo.png
https://community.rapid7.com/community/metasploit/blog

