Securing The Kernel Via Static Binary Rewriting, Program

Shepherding and Partial Control Flow Integrity

Piotr Bania
www.piotrbania.com

2011

Project sta- strong working proof of
tus: concept completed
Supported X86
archs:
Supported Microsoft Windows XP,
OS: Vista, 7

Abstract

Recent Microsoft security bulletins show that ker-
nel vulnerabilities are becoming more and more im-
portant security threats. Despite the pretty exten-
sive security mitigations many of the kernel vul-
nerabilities are still exploitable. Successful kernel
exploitation typically grants the attacker maximum
privilege level and results in total machine compro-
mise.

To protect against kernel exploitation, we have
developed a tool which statically rewrites the Mi-
crosoft Windows kernel as well as other kernel level
modules. Such rewritten binary files allow us to
monitor control flow transfers during operating sys-
tem execution. At this point we are able to detect
whether selected control transfer flow is valid or
should be considered as an attack attempt.

Our solution is especially directed towards pre-
venting remote kernel exploitation attempts. Ad-
ditionally, many of the local privilege escalation
attacks are also blocked (also due to additional
mitigation techniques we have implemented). Our
tool was tested with Microsoft Windows XP, Win-
dows Vista and Windows 7 (under both virtual and
physical machines) on TA-32 compatible processors.
Our apparatus is also completely standalone and
does not require any third party software.

1 Introduction

Our tool uses the program shepherding tech-
nique [10] (monitoring control flow transfers). In
our approach, however, we are not using a dynamic
binary instrumentation engine, but instead all the
selected binary files (Windows kernel and modules)
are statically rewritten!. By monitoring the con-
trol flow transfers we can ignore the complexities
of various vulnerabilities and focus on preventing
the execution of malicious code. We are also using
partial Control Flow Integration [1] technique for
monitoring function returns. Section 2 describes
the design of our tool.

2 Design
Our apparatus consists of four main modules:

Integration? Responsible for disassembling, ana-
lyzing and rewriting binary data3;

Monitoring Responsible for filtering and moni-
toring the control flow transfers;

Configuration Responsible for configuring, load-
ing and unloading the monitoring module;

Installer Responsible for replacing the rewritten
kernel and necessary drivers.

The following subsections describe each module
more thoroughly.

1Using dynamic binary instrumentation engines on kernel
level code is surely harder to implement and more dangerous
to use.

31In this paper integration process is limited to kernel and
kernel mode components.

http://www.piotrbania.com

2.1 Integration module

Integration module is the most important and com-
plex part of this project. It can be divided in two
separate submodules: analyzer module and rewrit-
ing module.

2.1.1 Analyzer module

The analyzer module is responsible for disassem-
bling and analyzing binary programs. In our case
the binary programs are written in the Portable Ex-
ecutable (PE) file format. The analyzer engine is a
slightly modified version of the one used in our pre-
vious automated binary differential analysis project
called AutoDiff [14]. This component is completely
standalone and does not rely on other disassembly
engines, like the widely used commercial product
IDA Pro [9].

The analyzer provides structured information for
the integration module. This includes the informa-
tion about the instructions, basic blocks, functions
and other important data. The analyzer engine
also divides the analyzed code into two major cat-
egories:

Solid code Obtained in a result of recursive
traversal disassembly and other heuristic tech-
niques based on the Portable Executable file
format characteristics;

Prospect code Obtained in any other fashion,
e.g., by using relocation information or by test-
ing solid instruction operands.

Since our engine is using recursive traversal disas-
sembly, dividing the analyzed code into those two
categories helps us to avoid further code vs data
misunderstandings. Additional heuristics mecha-
nisms are also used, since the complexity of the
executable binary files is often high. We also try to
improve the code coverage by using the Microsoft
symbol files. The main rule we have been using at
this point is that it is better to confuse code as data
than vice versa. This will be further explained in
the next subsection.

As a result we achieve very good code cover-
age together with excellent overall performance (see
Section 3.2.1).

2.1.2 Rewriting module

With the results gathered during the previous step,
the rewriting module can perform the static code
rewriting process. Basing on our previous expe-
riences with static code rewriting like in project
Aslan [2] or SpiderPig [3], we have decided to use
a more secure (stable) approach. In Aslan [2] the
approach was to interfere with all the original in-
structions and data. This of course often required
manual interaction because of the code vs data
dilemma, which cannot be totally resolved by the
static analysis. Such an approach is not really us-
able, as it cannot be fully automated. Thus, we
have decided to modify and use SpiderPig [3] in-
stead (it is easier and more secure to perform).

Code Integration Method Our tool can
rewrite the binary files in two general ways. The
first way is an non-invasive one, where the rewrit-
ten code is placed in a separate file. In other words,
the original files are not modified. This approach
requires the additional driver module to load the in-
tegrated code into the operating system and patch
all the necessary original modules in virtual mem-
ory. This approach is considered to be more secure
(in terms of stability) since the original files are
not changed. The second way (which is currently
implemented and used in our tool) is more invasive
since it modifies (rebuilds) the original Portable Ex-
ecutable files. In other words, the operating system
boots up with an already modified kernel and se-
lected kernel modules. We will describe our code
integration algorithm in reference to the currently
used method (invasive).

One of our initial assumptions in the process of
static binary rewriting was to preserve the original
file structure in such a way that the original code
and data offsets are not changed. This step is es-
sential for increasing the stability of the rewritten
code and avoiding other problems like the already
mentioned code vs data dilemma. The newly gen-
erated code which includes all the original functions
is attached to the end of the original file. Typically
the new code resides in the relocation section of
the original Portable Executable file. The destina-
tion section is expanded and modified in order to
handle executable and non-pageable code. Code is
rewritten such that all the original functions are in-
strumented (this will be described in the next para-

graph) and the overall functionality is preserved.
Rewritten functions also do not contain shared ba-
sic blocks*. The binary rewriting process can be
divided into three phases:

Instrumentation Responsible for adding instru-
mentation code and expanding original control
transfer instructions;

Calculation Responsible for allocating new rela-
tive virtual addresses for the rewritten basic
blocks and for generating new relocation en-
tries;

Repairing Responsible for repairing relative off-
sets of control transfer instructions.

In the Instrumentation phase we have two pri-
mary objectives. First one is to expand all the short
conditional and unconditional jumps in order to
avoid further problems with fixing the relative off-
sets in the repairing phase. Second one is strict re-
quirement of the program shepherding method. In
this case we add instrumentation for every instruc-
tion that is either a indirect CALL or indirect JMP in-
struction. However For the sake of Control Flow In-
tegrity we are instrumenting suitable relative CALL
and return (RET) instructions. Instrumentation is
performed in such a way that the added chunk
of code is executed before the original instruction.
This gives us the possibility to deny the control
transfers into the malicious memory region. It is
worth noticing that we are not instrumenting CALL
or JMP indirect instructions which refer to imported
API functions. Firstly because the import address
table is typically read-only (presents low security
threat), and secondly due to performance reasons.

The Calculation phase is responsible for the cal-
culation of new relative virtual addresses of the
newly generated basic blocks. Additionally it is
also needed for creating new relocation entries for
the generated code. If an original instruction con-
sists of an operand (either immediate or memory
immediate) that has a relocation entry, the rewrit-
ten instruction requires the corresponding reloca-
tion entry as well.

The Repairing phase is necessary for fixing the
offsets of the control transfer instructions that use
relative operands. This is essential for keeping

4This is done especially for some protection methods we
would like to implement in the future [13, 15].

the rewritten correct stable and to ensure that the
execution flow will remain in the rewritten code.
At this point we don’t need to repair other con-
trol transfer instructions since we assume the con-
trol will be given back due to the emitted function
hooks (see next paragraph).

When all the phases are finished the engine is al-
most ready to produce a new Portable Executable
file that contains the rewritten code. However,
there is one essential step yet to perform. In or-
der to transfer the execution from original code to
the rewritten code, the engine must patch original
functions and redirect them to the corresponding
generated ones. This is achieved by emitting the
JMP relative instruction at the original function pro-
logue. This is not so easy to perform since the first
basic block of the original function may be smaller
than the 5 bytes required for the patch. Addition-
ally, we may confuse code with data and patch some
essential kernel structure which in the end will lead
to a system crash.

In order to do this safely, our engine decides
whether the original function can be patched or
not. The decision is based on a few tests. First
of all we check the size of first basic block. If it
is not large enough original function remains un-
patched. For the functions marked as prospect
code we apply some additional tests. For exam-
ple, we don’t patch functions that consist only of
one basic block. We also test if the selected func-
tion is entirely built from ASCII or Unicode char-
acters. As it was mentioned earlier we prefer to
redirect less functions and cause no stability issues
than vice versa. It is also worth mentioning that the
Windows kernel uses self-modifying code at certain
places, forcing us to use additional checking mech-
anisms to address such problems. Even though we
don’t redirect all the original functions, our tests
showed that it is still more than enough for our so-
lution to work successfully. After the original func-
tions are patched, the engine checks the relocation
entries one more time in order to make sure none of
them overlaps with the 5 byte relative JMP instruc-
tion. If such relocation entry is found it is simply
erased. Lastly the Portable Executable headers are
fixed. When all the issues are resolved the new PE
file is emitted.

It is important to note that the static binary
rewriting process may be performed on a different
(remote) machine.

2.1.3 Control Flow Integrity

Control Flow Integrity rules [1] dictate that soft-
ware execution must follow a path of Control Flow
Graph (CFG) which in our case is obtained by
the analyzer module by using static binary analy-
sis. Whenever the control flow deviates from previ-
ously calculated path (CFG) the attack is detected.
However due to the complexity of executable code
and static binary analysis problems (explained be-
fore) it is hard to calculate the perfect Control Flow
Graph which is crucial for our mechanism. In or-
der to resolve this issue we have developed a spe-
cial policy which guarantees us the correct Control
Flow Graph. We have named is as partial Control
Flow Integration policy since first of all we focus
only on return instructions (since the indirect calls
and jumps are handled differently) and secondly
we don’t protect functions that are not suitable
according to our policy. Additionally in our case
we are especially basing on the Call Graph that
represent relationships between subroutines (func-
tions). Our policy states that functions that
are referenced by a relocation entry or are
exported are not suitable for Control Flow
Integration since it is impossible to deter-
mine the full Control Flow Graph by using
static binary analysis®. This prevents us from
protecting functions that are for example executed
by 3rd party modules. Every return instruction of
a CFI suitable function is then instrumented in a
following fashion:

PUSH EAX

MOV EAX ,DWORD PTR SS:[ESP+4]
CMP DWORD PTR DS:[EAX+3], FUNCTION_KEY
JNZ SHORT wrong_key

POP EAX

cfi_ok:

RETN

wrong_key:

CMP EAX, ORG_CALL1_VA+5

JE cfi_ok

CMP EAX, ORG_CALLX_VA+5

JE cfi_ok

corrupted_cfi:

POP EAX
CALL report_corrupted_cfi
INT3

Listing 1: Function return with CFI instrumenta-

5We also require the selected function to not have any
shared basic block among other functions

tion.

Additionally each relative call to a protected
function is instrumented with a special x86 long
NOP (0xOF Ox1F) instruction which allows us to
place a 32 bit function key (FUNCTION_KEY) as a
NOP operand. Code emitted at wrong_key label is
used as a precaution and typically it shouldn’t be
executed at all. If a CFI protect procedure is called
from a location that was not included in the origi-
nal Call Graph our mechanism will detect an attack
attempt.

2.1.4 Original Code Erasion

Our prototype is able to erase original code of pro-
tected driver in order to protect from "code reuse"
technique. In this case most of the original mod-
ule code will be filled with 0xCC bytes. Please read
INSTALL.TXT for more details.

2.1.5 Random code insertion

In order to change internal offsets of instructions
our prototype is able to inject any code at any place
in the generated code. The idea here is to keep the
produced code different from one generation to an-
other generation. Currently to demonstrate this
technique we are injecting a NOP instruction ran-
domly on every beginning of the basic block. Please
read INSTALL.TXT for more details.

2.2 Monitoring module

Monitoring module is developed as a device driver.
It acts as a server for the configuration module. It
is also responsible for filtering and monitoring the
control transfers caused by instrumented instruc-
tions. The filtering method is described in Sec-
tion 2.2.2. Monitoring module contains a memory
map structure that includes the information about
the currently loaded kernel modules. This mem-
ory map is updated after selected device driver is
loaded to or unloaded from the kernel memory. It is
worth noting that instrumented instructions in the
rewritten binary files do not execute the filtering
procedure before the monitoring module is not fully
initialized. Monitoring module is also responsible
for blocking most of the local privilege escalation
exploits by utilizing a very simple but yet effective
technique (described in the Section 2.2.1).

2.2.1 Mitigation technique for local privi-

lege escalation attacks

Most of the local privilege escalation exploits
use the NtQuerySystemInformation® function to
gather the base addresses where the kernel mod-
ules are mapped to. On Microsoft Windows
systems, device drivers are mapped to differ-
ent memory addresses each run. Thus, get-
ting their base addresses is very often essential
for such exploits to work correctly. Our solu-
tion hooks the NtQuerySystemInformation func-
tion and denies all user-mode requests where the
SystemModuleInformation class is passed as pa-
rameter. According to our tests this method does
not influence the operating system stability”. At
this point the only way for the attacker to succeed
is to find the base address using some other method
(for example by using another vulnerability).

2.2.2 Detecting exploitation attempts

In order to detect attack attempts, the filtering
(monitoring) procedure needs to decide whether se-
lected control transfer is valid or not. Filtering pro-
cedure must be fast enough to not cause any major
slowdown of the operating system. Our tool uses
the memory map structure (mentioned in the previ-
ous section) which contains information about the
currently loaded device drivers. This information is
divided into fast memory page lookup entries which
provide the characteristics of the selected page. For
example it shows whether the page is writable, ex-
ecutable or whether it is a part of the kernel or
any other loaded module. At this point our secu-
rity policy is very simple. We mark all the control
transfers to pages that are not executable and are
not the part of kernel or other modules as attack at-
tempts. Since we don’t store the information about
the userland modules, all control transfers from ker-
nel to usermode space are automatically marked as
forbidden.

2.2.3 Reaction to attack

When an attack is detected there are two avail-
able reaction options in the monitoring module.

6EnumDeviceDrivers is also used however this API func-
tion is just a wrapper for NtQuerySystemInformation.

7Our tests were performed on a default instalations of
Microsoft Windows systems.

First one is to log the attack in a specified file and
continue the execution; this is especially useful for
honeypot-like systems. The second choice provides
the attack logging feature together with immediate
system shutdown. It is important to notice that we
are operating in the kernel mode. Therefore there
is no single task we can securely terminate in com-
parison to user mode solutions where such action
can be typically safely performed.

2.3 Configuration module

The Configuration module loads the monitoring
module driver and creates initial memory map for
all of the currently loaded kernel modules. It also
provides additional information required by the
monitoring module. Our policy allows only one
configuration attempt after system start. This is
done in order to block other potentially malicious
configuration requests from the attacker.

2.4 Installer module

This module currently consists of batch scripts
and programs that allow one to modify the Mi-
crosoft kernel and selected device drivers. On
Windows XP we are using a WINLOGON.EXE
thread injection method to disable the Windows
File Protection. This is achieved by execut-
ing the SfcTerminateWatcherThread API from
SFC_0S.DLL library. On Microsoft Windows Vista
and Windows 7 we need to take file ownership and
grant full access control permissions to ourselves.
Additionally WINLOAD.EXE is copied and patched
in order to allow the execution of modified Win-
dows kernel. We are currently working on fully
automating described tasks (together with easy file
recovery) for all Windows operating systems.

3 Experimental results

This section is divided into two subsections. First
one describes the results we have obtained while
testing versus selected Windows exploits. Second
one shows the performance impact.

3.1 Effectiveness

We have tested our solution with a few publicly
available exploits. Due to small number of publicly

released exploits (especially remote ones) targeting
kernel and kernel modules, our tests are currently
limited. Obtained results are presented below:

e CVE-2009-3103 (Microsoft Windows SMB2
‘Smb2ValidateProviderCallback’ Remote
Code Execution Vulnerability) [4, 16]

This vulnerability allows remote attack-
ers to execute arbitrary code with system
privileges. Reliable and publicly known
exploit for this issue (see [16] for technical
details on the exploitation process) firstly
generates a so called trampoline which is
located at fixed BIOS/HAL memory region
(which is by default readable, writeable, and
executable). After the trampoline is ready the
execution is thrown to it using a CALL EAX
instruction (located in srv2.sys module).
Our solution is able to detect and block this
attack before the generated trampoline is
executed.

e CVE-2010-2743 (Microsoft ~ Windows
win32k.sys Keyboard Layout Vulnerability)
[5, 20, 17]

This is one of the local wvulnerabilities
exploited by the Stuxnet worm [21] in order
to elevate privileges. Keyboard layout vulner-
ability is caused by win32k!xxxKENLSProcs
function that do not properly perform in-
dexing of a function-pointer table during
the loading of keyboard layouts from disk.
Malicious code in this case is executed by
the CALL _aNLSVKFProcl[ecx*4] instruction.
Due to forged index value the code flow is
redirected to 0x60636261. Contents of the
memory located at this specific address can
be controlled by the attacker. Tests showed
that our tool detects and prevents successful
exploitation of this vulnerability.

Most of the others local privilege escalation
exploits are unable to work at the very first stage.
This is caused by the mitigation that was described
in the section 2.2.1.

As a “side effect” our apparatus is able to
detect some cases of hidden malicious code that

operates at the kernel level (like rootkits or
bootkits).

3.2 Performance

Following section presents the performance results
of our tool. It is divided into two subsections.
Where first one describes the performance of the
integration module and the second one focuses on
testing the protected operated system itself.

3.2.1 Integration performance

Table 1 presents the results obtained by inte-
grating original Microsoft Windows 7 files (listed
below). This test was performed on T3400 2.16Ghz
(Core2) notebook machine with 2.46GB of RAM.
Modules (files) presented in the table were chosen
specifically due to potential security threats they
create. This does not mean our tool is not able to
protect other modules.

The legend for Table 1 is as follows:
o Size,q - original file size,
e Size;,; - file size after integration,

® Tyisasm - time required for disassembling the
selected file®,

o Tyusichiock - time required for creating basic
blocks from the disassembly information

e T,,: - time required for instrumenting, repair-
ing and generating new code”.

Presented results indicate that the integration
process is more than satisfactory in terms of speed
and memory usage. Results also show that typi-
cally newly generated files are twice as large as the
original ones. This is natural considering the mod-
ifications we have applied. Also we don’t consider
this as a drawback at all since nowadays few MBs of
additional memory is not really considered expen-
sive. As it was mentioned earlier (see Section 2.1.2),
our integration engine may also work on external
machines. This gives user the opportunity to per-
form the binary rewriting process remotely.

8Does not include time required for downloading symbol
file etc.
9Does not include time required for emitting the PE file.

Table 1: Static binary rewriting performance depending on a various files.

File Sizeorg Sizeint T disasm Thasicbiock | Instructiond Basic Memory Tine
[MB] [MB] [sec] [sec] [#] blocks [#] | usage [MB] | [sec]
afd.sys 0.13208 | 0.30835 | 0.050622 | 0.049928 | 36351 9742 10.324219 0.059221
http.sys 0.253418 | 0.559937 | 0.116081 | 0.123439 | 65868 16211 16.167969 | 0.104105
ipsec.sys 0.071777 | 0.172485 | 0.022959 | 0.018481 | 21893 5234 11.074219 0.022762
mrxsmb.sys | 0.436646 | 0.998657 | 0.165068 | 0.157653 | 111247 27215 30.175781 | 0.171291
ndis.sys 0.174194 | 0.380493 | 0.078988 | 0.070438 | 45990 11649 16.070313 0.071033
ndistapi.sys | 0.01001 | 0.021484 | 0.002144 | 0.001546 | 1971 476 10.011719 0.002589
ndproxy.sys | 0.039063 | 0.088379 | 0.01116 0.007857 | 10048 2301 10.585938 0.011456
netbios.sys | 0.033081 | 0.073608 | 0.014428 | 0.01353 8811 2451 10.257813 | 0.018943
netbt.sys 0.155273 | 0.365356 | 0.073585 | 0.072251 | 44696 11239 16.382813 0.092584
ntkrnlpa.exe| 1.974731 | 4.710938 | 0.911645 | 0.59494 518868 132890 122.539063 | 0.705654
ntoskrnl.exe | 2.092407 | 4.828491 | 0.743287 | 0.611262 | 517767 134932 124.707031 | 2.559062
SI'V.Sys 0.341309 | 0.767334 | 0.108492 | 0.097917 | 91164 22616 27.789063 | 0.130862
tepip.sys 0.344849 | 0.806885 | 0.105241 | 0.102179 | 90913 23610 28.527344 0.182019
tdi.sys 0.018188 | 0.040527 | 0.004537 | 0.004298 | 3978 1005 18.308594 | 0.008281
win32k.sys | 1.781616 | 4.432373 | 0.771259 | 0.631631 | 538478 137020 121.511719 | 2.604051

3.2.2 System performance

In the system performance testing we have used our
own custom benchmarking tool and also two other
solutions for Microsoft Windows systems (Nov-
aBench version 3 [11] and PerformanceTest 7 [12]
evaluation version).

Benchmarked machine configuration: Intel
Core2 Q9550 2.83GHz; 3327 MB RAM,; ATI
Radeon HD 5870; Windows 7 (32-bit).

Our benchmark results are presented in Table
2, NovaBench results are presented in Table 3.
PerformanceTest benchmark results are presented
in Table 4.

The legend for Table 2 is as follows:
e P; - protected machine (full instrumentation),

e Ps; - slowdown (P; versus native configura-
tion),

Each benchmark program tend to produce re-
sults that vary during each system run. Our cus-
tom benchmarking tool executes four types of tests.
The Process Test works by creating 50 instances

Table 2: Custom benchmark results on native and
protected systems.

Test Native | Py [s] Ps;
[s] K
Process 47,013 | 49,132 | 4,314
Write File | 212,391 | 204,903 | -3,654
Read File | 52,925 | 57,292 | 7,621
Memory 19,5143 | 19,168 | -1,807

of calc.exe program. The time is measured un-
til all of the created processes are fully initialized.
The Write File Test creates 100 10MB files and
fills them with constant data. The Read File Test
works in analogical way. In both cases time is
measured until all files are processed. Last test
(Memory Test) allocates (commits) 100 memory
regions each 10MB wide, fills them with constant
data and finally frees the committed regions. Time
is measured until this process is finished for all
the regions. Each test was performed 30 times
for both protected and unprotected configurations.
The arithmetic mean of the results was used in the
comparison process.

Our benchmark showed that the largest perfor-
mance impact was observed in the Read File Test.

Table 3: NovaBench 3 results on native and pro-
tected system (higher number the better).

Test Native Protected
system system
RAM Speed (MB/s) 4292 4303
Floating Point (ops/s) | 102158140 | 102160836
Integer (ops/s) 334728164 | 334641264
MD5 Hashes (gen/s) 932387 932632
CPU Score 404 404
Graphics Tests Score 502 504
Drive Write Speed | 84 85
(MB/s)
Hardware Tests Score | 31 31
NovaBench Score 1040 1042

Table 4: PerformanceTest 7 results on native and
protected system (higher number the better).

Test Native | Protected
Sys- system
tem

Graph2D - Solid Vectors 3.9 3.5

Graph2D - Transparent Vec- | 3.8 3.4

tors

Graph2D - Complex Vectors | 93.9 83.3

Graph2D - Fonts and Text 121.3 111.2

Graph2D - Windows Inter- | 71.6 62.7

face

Graph2D - Image Filters 433.4 432.1

Graph2D - Image Rendering | 290.2 289.2

Memory - Small Block Alloc | 2573.6 | 2553.3

Memory - Read Cached 2202.4 | 2202.0

Memory - Read Uncached 2022.5 | 2030.7

Memory - Write 2109.8 | 2103.5

Memory - Large RAM 1242.8 | 1232.6

The slowdown in this case was approximately 7%
(P case). It is also worth noticing that the Write
File Test and the Memory Test were actually faster
on the protected configuration. On the other hand
the Passmark benchmark shows that protected sys-
tem causes some negative performance effect on
2D graphics tests (Table 4) - where they oscillate
from 0% to 14%. However the NovaBench (Table
3) benchmark shows something completely differ-
ent. Appending to the NoveBench test results pro-
tected machine configuration was faster than the
native one and scored 1042 points (where native
scored only 1040). Additionally it is also worth
noticing that performance slowdowns presented in
our benchmarks are often not widely manifested.

4 Future Work

Please read INSTALL.TXT for more details.

5 Conclusion

This paper presents a method for securing the ker-
nel of the operating system (in this case Microsoft
Windows). Our engine uses static binary rewrit-
ing and code instrumentation techniques in order
to monitor the control flow. We have shown that
our protection is capable of detecting and blocking
both remote (especially) and local attacks. Our so-
lution, however, does not prevent against exploits
that overwrite sensitive data and it also does not
protect against vulnerabilities in 3rd party kernel
modules (besides the technique presented in section
2.2.1).

We have also described techniques and ideas that
may be implemented in the future. Performance
impact together with operating system benchmarks
was also presented. We believe that currently our
solution provides a unique security solution for the
Microsoft Windows kernel and does not require any
special hardware features. Of course this mech-
anism cannot solve every security problem com-
pletely but it does make kernel exploitation much
harder.

References

[1]

[10]

Martin Abadi, Mihai Budiu, Ulfar Erlingsson,
and Jay Ligatti. Control-flow integrity princi-
ples, implementations, and applications. ACM
Trans. Inf. Syst. Secur., 13:4:1-4:40, Novem-
ber 2009.

Piotr Bania. Aslan (4514N) Metamorphic
Engine. http://www.piotrbania.com/all/
4514N/, 2006.

Piotr Bania. SpiderPig - The Data Flow Tracer
Project Homepage. http://www.piotrbania.
com/all/spiderpig, 2008.

CVE Database. CVE-2009-3103.
http://www.cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2009-3103.

CVE Database. CVE-2010-2743.
http://cve.mitre.org/cgi-bin/cvenane.
cgi?name=CVE-2010-2743.

Dino A. Dai Zovi. Practical Return-Oriented
Programming. http://trailofbits.files.
wordpress.com/2010/04/practical-rop.
pdf.

Erik Buchanan, Ryan Roemer, Ste-
fan Savage, Hovav Shacham. Return-
oriented Programming: Exploita-
tion without Code Injection. https:

//www.blackhat.com/presentations/
bh-usa-08/Shacham/BH_US_08_Shacham_
Return_Oriented_Programming.pdf.

Fyyre. Disable PatchGuard - the easy/lazy
way. http://fyyre.ivory-tower.de/txt/
bootloader.txt.

Hex-Rays. Interactive Disassembler Pro.
http://www.hex-rays.com/idapro/.

Vladimir Kiriansky, Derek Bruening, and
Saman P. Amarasinghe. Secure execution
via program shepherding. In Proceedings of
the 11th USENIX Security Symposium, pages
191-206, Berkeley, CA, USA, 2002. USENIX
Association.

NovaBench 3.

Novawave Inc.
novabench. com.

http://

[12]

[13]

[14]

[15]

[18]

[21]

PassMark Software. PerformanceTest 7. http:
//www .passmark. com.

PaX Team. Pax Future. http://pax.
grsecurity.net/docs/pax-future.txt.

AutoDiff - Automated Bi-
http://

Piotr Bania.
nary Differential Analysis Project.
autodiff.piotrbania.com.

Piotr DBania. Security Mitigations for
Return-Oriented Programming Attacks.
http://piotrbania.com/all/articles/
pbania_rop_mitigations2010.pdf.

Piotr Bania. SMB2:
ets from the Trampoline.
//blog.metasploit.com/2009/10/
smb2-351-packets-from-trampoline.html.

351 Pack-

http:

Ruben Santamarta. Stuxnet MS10-
073/CVE-2010-2743 Exploit. http:
//reversemode.com/index.php?option=

com_content&task=view&id=71&Itemid=1.

Hovav Shacham. The geometry of innocent
flesh on the bone: Return-into-libc without
function calls (on the x86). In Sabrina De Cap-
itani di Vimercati and Paul Syverson, editors,
Proceedings of CCS 2007, pages 552—61. ACM
Press, October 2007.

Skape and Skywing. Bypassing PatchGuard
on Windows x64. http://www.uninformed.
org/7v=3%a=3.

VUPEN Vulnerability Research Team. Tech-
nical Analysis of the Windows Win32K.sys
Keyboard Layout Stuxnet Exploit.
http://www.vupen.com/blog/20101018.
Stuxnet_Win32k_Windows_Kernel_ODay_
Exploit_CVE-2010-2743.php.

Wikipedia. Stuxnet worm. http://en.

wikipedia.org/wiki/Stuxnet.

http://www.piotrbania.com/all/4514N/
http://www.piotrbania.com/all/4514N/
http://www.piotrbania.com/all/spiderpig
http://www.piotrbania.com/all/spiderpig
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-3103
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2743
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2743
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
https://www.blackhat.com/presentations/bh-usa-08/Shacham/BH_US_08_Shacham_Return_Oriented_Programming.pdf
http://fyyre.ivory-tower.de/txt/bootloader.txt
http://fyyre.ivory-tower.de/txt/bootloader.txt
http://www.hex-rays.com/idapro/
http://novabench.com
http://novabench.com
http://www.passmark.com
http://www.passmark.com
http://pax.grsecurity.net/docs/pax-future.txt
http://pax.grsecurity.net/docs/pax-future.txt
http://autodiff.piotrbania.com
http://autodiff.piotrbania.com
http://piotrbania.com/all/articles/pbania_rop_mitigations2010.pdf
http://piotrbania.com/all/articles/pbania_rop_mitigations2010.pdf
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://blog.metasploit.com/2009/10/smb2-351-packets-from-trampoline.html
http://reversemode.com/index.php?option=com_content&task=view&id=71&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=71&Itemid=1
http://reversemode.com/index.php?option=com_content&task=view&id=71&Itemid=1
http://www.uninformed.org/?v=3&a=3
http://www.uninformed.org/?v=3&a=3
http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://www.vupen.com/blog/20101018.Stuxnet_Win32k_Windows_Kernel_0Day_Exploit_CVE-2010-2743.php
http://en.wikipedia.org/wiki/Stuxnet
http://en.wikipedia.org/wiki/Stuxnet

	1 Introduction
	2 Design
	2.1 Integration module
	2.1.1 Analyzer module
	2.1.2 Rewriting module
	2.1.3 Control Flow Integrity
	2.1.4 Original Code Erasion
	2.1.5 Random code insertion

	2.2 Monitoring module
	2.2.1 Mitigation technique for local privilege escalation attacks
	2.2.2 Detecting exploitation attempts
	2.2.3 Reaction to attack

	2.3 Configuration module
	2.4 Installer module

	3 Experimental results
	3.1 Effectiveness
	3.2 Performance
	3.2.1 Integration performance
	3.2.2 System performance

	4 Future Work
	5 Conclusion

